Telegram Group & Telegram Channel
🚀 Как Duolingo ускорил микросервисы на 40% с помощью асинхронного Python 🐍

Duolingo рассказали, как им удалось значительно повысить производительность своих Python-сервисов, переведя их на async/await, и сделали это не ради хайпа, а ради экономии.

💸 Мотивация: производительность и снижение затрат
Duolingo работает с большим количеством микросервисов, обрабатывающих огромные объёмы трафика. Несмотря на высокую нагрузку, многие их Python-сервисы простаивали в ожидании I/O — например, сетевых запросов или операций с базой данных. Это означало неэффективное использование CPU, а значит — деньги на облачный хостинг тратились зря.

Асинхронный код — способ “переключаться” между задачами во время ожидания, используя CPU с большей отдачей. Именно это стало главной мотивацией: не “просто быть async”, а снизить расходы.

⚙️ Как проходила миграция
Процесс был постепенным и продуманным. Ниже ключевые шаги:

Переход не “всё или ничего”
Команда не бросалась переписывать весь сервис с нуля. Они начали с конвертации отдельных маршрутов (routes) на async def, добавляя поддержку асинхронности по частям.

Инструменты постепенно адаптировали
Библиотеки и инструменты внутри компании пришлось обновить:
свой HTTP-клиент переписали под aiohttp,
систему аутентификации сделали совместимой с async-контекстами,
логирование, трассировка и метрики обновили под async-архитектуру.

Тесты и инфраструктура
Асинхронные изменения требовали пересмотра тестов. Они внедрили поддержку pytest-asyncio и переосмыслили подход к мокам и фикстурам.

Запуск в проде — поэтапно
Сначала маршруты работали в синхронном режиме. Потом их перевели в async-режим и замерили разницу. Так удалось отловить “узкие места” до массового внедрения.

📈 Результаты: +40% производительности на инстанс
У каждого экземпляра микросервиса CPU начал использоваться эффективнее.
Снизилось среднее время ответа (latency).
Уменьшилось количество необходимых инстансов — экономия в $$$.
Код стал удобнее масштабировать и поддерживать в I/O-интенсивной среде.

Пока один запрос “ждёт”, процессор может выполнять другие задачи.

🔍 Выводы
Duolingo подчёркивает:
асинхронность не нужна “просто потому что модно”.
Но если у вас сервис с большим числом I/O-операций и важна производительность — async Python может дать реальный прирост и экономию.

Оригинальный пост

@pythonl



tg-me.com/pythonl/4726
Create:
Last Update:

🚀 Как Duolingo ускорил микросервисы на 40% с помощью асинхронного Python 🐍

Duolingo рассказали, как им удалось значительно повысить производительность своих Python-сервисов, переведя их на async/await, и сделали это не ради хайпа, а ради экономии.

💸 Мотивация: производительность и снижение затрат
Duolingo работает с большим количеством микросервисов, обрабатывающих огромные объёмы трафика. Несмотря на высокую нагрузку, многие их Python-сервисы простаивали в ожидании I/O — например, сетевых запросов или операций с базой данных. Это означало неэффективное использование CPU, а значит — деньги на облачный хостинг тратились зря.

Асинхронный код — способ “переключаться” между задачами во время ожидания, используя CPU с большей отдачей. Именно это стало главной мотивацией: не “просто быть async”, а снизить расходы.

⚙️ Как проходила миграция
Процесс был постепенным и продуманным. Ниже ключевые шаги:

Переход не “всё или ничего”
Команда не бросалась переписывать весь сервис с нуля. Они начали с конвертации отдельных маршрутов (routes) на async def, добавляя поддержку асинхронности по частям.

Инструменты постепенно адаптировали
Библиотеки и инструменты внутри компании пришлось обновить:
свой HTTP-клиент переписали под aiohttp,
систему аутентификации сделали совместимой с async-контекстами,
логирование, трассировка и метрики обновили под async-архитектуру.

Тесты и инфраструктура
Асинхронные изменения требовали пересмотра тестов. Они внедрили поддержку pytest-asyncio и переосмыслили подход к мокам и фикстурам.

Запуск в проде — поэтапно
Сначала маршруты работали в синхронном режиме. Потом их перевели в async-режим и замерили разницу. Так удалось отловить “узкие места” до массового внедрения.

📈 Результаты: +40% производительности на инстанс
У каждого экземпляра микросервиса CPU начал использоваться эффективнее.
Снизилось среднее время ответа (latency).
Уменьшилось количество необходимых инстансов — экономия в $$$.
Код стал удобнее масштабировать и поддерживать в I/O-интенсивной среде.

Пока один запрос “ждёт”, процессор может выполнять другие задачи.

🔍 Выводы
Duolingo подчёркивает:
асинхронность не нужна “просто потому что модно”.
Но если у вас сервис с большим числом I/O-операций и важна производительность — async Python может дать реальный прирост и экономию.

Оригинальный пост

@pythonl

BY Python/ django









Share with your friend now:
tg-me.com/pythonl/4726

View MORE
Open in Telegram


Python django Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Python django from id


Telegram Python/ django
FROM USA